A Tale of Two Interfaces

DVB/ASI – SMPTE 310 Andy Butler Sr. Director – Engineering

Today's Presentation

- Brief Review of Each Standard
- Strengths and Weaknesses Analyses
- Practical Implementation Tips
- Sources for Additional Information
- Q&A

DTV Interface/Transport Summary

- Full Bandwidth 1.5 gbit HD
- Full Bandwidth 270 mbit SD
- Lightly Compressed HD 330 mbit
- Transport Stream MPEG-2/ATSC
 - SMPTE 310 M
 - ASI/DVB

DVB/ASI Family of Standards

- SPI Synchronous Parallel Interface
- SSI-C Synchronous Serial Interface on Coaxial Cable
- SSI-O Synchronous Serial Interface on Optical Fibre
- ASI-C Asynchronous Serial Interface on Coaxial Cable
- ASI-O Asynchronous Serial Interface on Optical Fibre

ASI – C - TRANSMIT

ASI - C - RECEIVE

ASI Clocking Options

ASI PLL for Clock Generation

Summary of Characteristics

- Fixed Transport Rate Flexible Payload Rate
- Robust Error Correction
- Deterministic Jitter 10%
- Random Jitter 8%
- Output Voltage 800 mV (p-p)

ATSC Transmitter System Block Diagram

SMPTE 310M DTV Transmitter Interface

Synchronous Serial Interface for MPEG-2 Digital Transport Stream

For 8T-VSB (19.3 Mb/s) and 16-VSB (38.6 Mb/s)

No error correction (for *low noise* environments)

Self-clocking bi-phase mark modulation (MSB first)

Unbalanced 0.8 Vpp centered at 0 Vdc

Single 75 Ω coax with (50 Ω) BNC connectors

Transport clock frequencies:

$$\begin{split} F_{\text{TRANSPORT}} &= N * (188/208) * (312/313) * F_{\text{SYMBOL}} \\ 8T-VSB: & 19.39265846 \text{ Mbits/sec} \quad (N = 2) \\ 16-VSB: & 38.78531692 \text{ Mbits/sec} \quad (N = 4) \\ \text{Clock frequencies within } \pm 2.8 \text{ ppm} \quad (\text{same as } F_{\text{sym}}) \end{split}$$

SMPTE 310M TRANSMIT

SMPTE 310M RECEIVER

SMPTE 310M Clock Frequencies

Signal	Clock Frequency (MHz)	±2.8 ppm Drift (Hz)
Symbol Clock	10.762238	±30
8-VSB Transport Clock	19.392659	<u>+</u> 54
8-VSB Interface Clock	38.785318	<u>+</u> 108
16-VSB Transport Clock	38.785318	<u>+</u> 108
16-VSB Interface Clock	77.570636	<u>+</u> 216

 $F_{INT} = 2*F_{tp} = 2*N*(188/208)*(312/313)*F_{SYM}$ N = 2 for 8T-VSB (2 data bits/symbol) N = 4 for 16-VSB (4 data bits/symbol)

Symbol Clock Tests

- Measure SMPTE 310M signal *directly*
 - Clock frequency
 - Easy to measure with current test equipment (e.g. frequency counter)
 - Drift tolerance < 2.8 ppm; drift rate < 0.028 ppm/sec
 - Clock (edge) jitter (nsec, p-p)
 - Need good piece of test equipment to measure this (e.g. high speed scope or specialized unit)
 - Signal transitions < 2 nsec, p-p
- Measure SMPTE 310M signal *indirectly*
 - Transmission symbol clock phase sidebands
 - Reference receiver SNR @ white noise threshold

Current Difficulties

- Currently, SMPTE 310M clock issues have been observed in couple of cities doing DTV field testing
- <u>Not</u> a problem with standard, just implementation
- Two issues:
 - Clock *frequency* tolerance
 - Clock *jitter* tolerance
- Effect:
 - Reduction of effective white noise threshold in receivers
 - Bursty performance
 - Not noticeable on Agilent 89441 or RFA300 test equipment

Symbol Clock Jitter

- Can creep into system anywhere
 - Transport (video) encoder
 - Any STL link (fiber, microwave)
 - SMPTE 310M interfaces
 - VSB modulator
- Symptoms: bursty errors at receiver
 - Moderate problem: near white noise threshold
 - Severe problem: even at strong signal levels
- Still looking for *convenient* way to measure jitter
- Currently only have *indirect* methods
 - Reference Rx white noise threshold degradation
 - Symbol clock modulation sidebands

Symbol Clock Spectrum - No Jitter

SMPTE 310M Pluses

- Self Clocking
- Polarity Insensitive
- Low Component Count
- Relatively Inexpensive
- Bandwidth Efficient in RF Implementation

DVB ASI Pluses

- Mature Standard Widely Implemented
- Robust Error Correction
- Includes Sync Byte
- Accepts a Variety of Bit Rates
- Electrically Identical to SDI (CCIR 601)

SMPTE 310M Minuses

- Uses NRZ Coding
- No Error Correction
- No Sync Bytes
- Jitter Sensitive
- Fixed Bit Rate once Implemented
- Limited Design and Field Experience

DVB ASI Minuses

- Polarity Sensitive
- Requires Wider Bandwidth in RF Implementations
- Higher Component Count
- Higher Cost to Implement

Practical Uses for DVB-ASI

- Decoder Output
- Intra-Facility Routing
- Localized Switching
- Input/Output of Storage Devices
- Input/Output of Bit Stream Manipulators
- Public Network Transport

Practical Uses for SMPTE 310M

- RF Transport
 - Over the air Broadcast
 - STL
 - RPU/ENG
- Efficient Bit Stream Storage

More Information

DVB/ASI – DVB Document A010

Interfaces for CATV/SMATV Headends and Similar Professional Equipment

SMPTE 310M-1998

Synchronous Serial Interface for MPEG-2 Digital Transport Stream

Acknowledgements

Gary Sgrignoli – Zenith Corporation David Horowitz – Horowitz Television Technology Jim Kutzner – Advanced Television Technology Center Ed Williams – PBS DTV Strategic Services Group Gregory Forbes – PBS Engineering Rudy Pruitt – PBS Engineering Lab

Great Training Opportunity

ATSC

VSB Transmission System Tutorials

Zenith – SBE – State Broadcast Associations Private Companies

YOUR TURN

Questions?

Discussion?

Debate?